201 research outputs found

    Enhancing wireless security via optimal cooperative jamming

    Get PDF
    In this work, we analyze the secrecy rate in a cooperative network, where a source node is assisted by relay nodes via cooperative jamming for delivering a secret message to the destination in the presence of an eavesdropper node. We consider the availability of both full and partial channel state information (CSI), and we take into account average power limitation at the relays as we formulate the rate maximization problem as a primal-dual problem. We derive the closed form solution for the full CSI case, and we show that the optimal solution allows the transmission of only one relay. For the partial CSI case, we define the concept of secrecy outage, where some of packets are intercepted by the eavesdropper, and we derive the secrecy outage probability and throughput in terms of average channel statistics. Due to the high nonlinearity of the secrecy throughput term, we propose a gradient update algorithm for obtaining the optimal power solutions for the partial CSI case. Our simulations demonstrate the gains of cooperative jamming over direct transmission for both full and partial CSI cases, where it is shown that the secrecy rate of the direct transmission is increased significantly, by %20−%80, when CJ is employed with our optimal power assignment algorithm

    Throughput analysis of ALOHA with cooperative diversity

    Get PDF
    Cooperative transmissions emulate multi-antenna systems and can improve the quality of signal reception. In this paper, we propose and analyze a cross layer random access scheme, C-ALOHA, that enables cooperative transmissions in the context of ALOHA system. Our analysis shows that over a fading channel C-ALOHA can improve the throughput by 30%, as compared to standard ALOHA protocol

    Energy distribution control in wireless sensor networks through range optimization

    Get PDF
    A major objective in wireless sensor networks is to find optimum routing strategies for energy efficient use of nodes. Routing decision and transmission power selection are intrinsically connected since the transmission power of a node is adjusted depending on the location of the next hop. In this paper, we propose a location-based routing framework to control the energy distribution in a network where transmission ranges, hence powers, of nodes are determined based on their locations. We show that the proposed framework is sufficiently general to investigate the minimum-energy and maximum-lifetime routing problems. It is shown that via the location based strategy the network lifetime can be improved by 70% and the total energy consumption can be decreased to three-fourths to one-third of the constant transmission range strategy depending on the propagation medium and the size of the network

    Wireless model-based predictive networked control system over cooperative wireless network

    Get PDF
    Owing to their distributed architecture, networked control systems (NCSs) are proven to be feasible in scenarios where a spatially distributed feedback control system is required. Traditionally, such NCSs operate over real-time wired networks. Recently, in order to achieve the utmost flexibility, scalability, ease of deployment, and maintainability, wireless networks such as IEEE 802.11 wireless local area networks (LANs) are being preferred over dedicated wired networks. However, conventional NCSs with event-triggered controllers and actuators cannot operate over such general purpose wireless networks since the stability of the system is compromised due to unbounded delays and unpredictable packet losses that are typical in the wireless medium. Approaching the wireless networked control problem from two perspectives, this work introduces a practical wireless NCS and an implementation of a cooperative medium access control protocol that work jointly to achieve decent control under severe impairments, such as unbounded delay, bursts of packet loss and ambient wireless traffic. The proposed system is evaluated on a dedicated test platform under numerous scenarios and significant performance gains are observed, making cooperative communications a strong candidate for improving the reliability of industrial wireless networks

    Scheduling for next generation WLANs: filling the gap between offered and observed data rates

    Get PDF
    In wireless networks, opportunistic scheduling is used to increase system throughput by exploiting multi-user diversity. Although recent advances have increased physical layer data rates supported in wireless local area networks (WLANs), actual throughput realized are significantly lower due to overhead. Accordingly, the frame aggregation concept is used in next generation WLANs to improve efficiency. However, with frame aggregation, traditional opportunistic schemes are no longer optimal. In this paper, we propose schedulers that take queue and channel conditions into account jointly, to maximize throughput observed at the users for next generation WLANs. We also extend this work to design two schedulers that perform block scheduling for maximizing network throughput over multiple transmission sequences. For these schedulers, which make decisions over long time durations, we model the system using queueing theory and determine users' temporal access proportions according to this model. Through detailed simulations, we show that all our proposed algorithms offer significant throughput improvement, better fairness, and much lower delay compared with traditional opportunistic schedulers, facilitating the practical use of the evolving standard for next generation wireless networks

    Label-free biosensors for the detection and quantification of cardiovascular risk markers

    Get PDF
    This paper presents a biosensor implementation for the detection of protein molecules using specific antibodies. Affinity sensors allow the detection and quantification of target molecules in complex mixtures by affinity-based interactions. Immobilized antibody molecules are the probes that bind to specific protein molecules (targets) in biological fluids. In this study, inter-digitated electrodes in the form of capacitance on glass slide were designed, fabricated and used to measure the changes in the dielectric properties of the inter-digitated capacitances. Our results in this study present that with a careful design of micro-interdigitated capacitors, a wider dynamic range and higher sensitivity can be achieved for the detection and quantification of C-Reeactive Protein

    Joint power and beamwidth optimization for full duplex millimeter wave indoor wireless systems

    Get PDF
    In this paper, a joint power and beam-level beamwidth control scheme is proposed for full duplex (FD) millimeter wave (mmWave) indoor wireless systems. Energy efficiency of the proposed scheme is investigated considering various system parameters, such as maximum transmit power level, level of self-interference cancellation and pilot transmission overhead. With this analysis for a realistic indoor wireless communication scenario, the feasibility of FD is studied for mmWave links, considering their specific propagation characteristics, namely, narrow transmission and reception beam-level beamwidths and high absorption losses, as well as massive bandwidth which is much larger than the existing sub 6 GHz bands. We evaluate the performance of the proposed FD mmWave system for three power budget schemes (low, moderate and high) in terms of average total energy efficiency. Our simulation results show that, for currently available state-of-the-art self-interference cancellation levels, FD mmWave with proposed joint power and beam-level beamwidth control outperforms the smart half duplex (HD) mmWave with joint transmission slot and beam-level beamwidth control by a factor of up to four times and improves FD mmWave with only power control by up to 33.92 %. If higher (close to ideal) selfinterference cancellation can be achieved, the net average total energy efficiency improvements over existing abovementioned schemes, are up to 4.8 times and 26.45 %, respectively. It is concluded that with the proposed joint power and beamwidth control, the current FD mmWave technology promises a good potential for indoor wireless networks

    High isolation slot coupled antenna with integrated tunable self-interference cancellation (SIC) circuitry

    Get PDF
    This letter presents a high interport isolation, compact dual polarized slot coupled monostatic patch antenna with integrated tunable analog/RF self interference cancellation (SIC) circuitry for 2.4/2.5 GHz In Band Full Duplex (IBFD) wireless applications. The presented antenna deploys hybrid feeding for improved interport isolation through polarization diversity and integrated single-tap RF SIC circuitry provides additional isolation on top of antenna isolation. Brief mathematical description for deployed single-tap RF SIC is also presented. The implemented prototype of proposed antenna module provides around 80 dB interport isolation for 20 MHz bandwidth and better than 97 dB peak isolation when measured in lab in the presence of environmental reflections. Moreover, 20 MHz SIC bandwidth with 80 dB interport isolation can be tuned within antenna’s 10 dB return loss impedance bandwidth of 60 MHz

    A cross layer multi hop network architecture for wireless Ad Hoc networks

    Get PDF
    In this paper, a novel decentralized cross-layer multi-hop cooperative network architecture is presented. Our architecture involves the design of a simple yet efficient cooperative flooding scheme,two decentralized opportunistic cooperative forwarding mechanisms as well as the design of Routing Enabled Cooperative Medium Access Control (RECOMAC) protocol that spans and incorporates the physical, medium access control (MAC) and routing layers for improving the performance of multihop communication. The proposed architecture exploits randomized coding at the physical layer to realize cooperative diversity. Randomized coding alleviates relay selection and actuation mechanisms,and therefore reduces the coordination among the relays. The coded packets are forwarded via opportunistically formed cooperative sets within a region, without communication among the relays and without establishing a prior route. In our architecture, routing layer functionality is submerged into the MAC layer to provide seamless cooperative communication while the messaging overhead to set up routes, select and actuate relays is minimized. RECOMAC is shown to provide dramatic performance improvements, such as eight times higher throughput and ten times lower end-to-end delay as well as reduced overhead, as compared to networks based on well-known IEEE 802.11 and Ad hoc On Demand Distance Vector (AODV) protocols

    RECOMAC: a cross-layer cooperative network protocol for wireless ad hoc networks

    Get PDF
    A novel decentralized cross-layer multi-hop cooperative protocol, namely, Routing Enabled Cooperative Medium Access Control (RECOMAC) is proposed for wireless ad hoc networks. The protocol architecture makes use of cooperative forwarding methods, in which coded packets are forwarded via opportunistically formed cooperative sets within a region, as RECOMAC spans the physical, medium access control (MAC) and routing layers. Randomized coding is exploited at the physical layer to realize cooperative transmissions, and cooperative forwarding is implemented for routing functionality, which is submerged into the MAC layer, while the overhead for MAC and route set up is minimized. RECOMAC is shown to provide dramatic performance improvements of eight times higher throughput and one tenth of end-to-end delay than that of the conventional architecture in practical wireless mesh networks
    • …
    corecore